Small-strain, non-linear elastic Winkler models for uniaxial loading of suction caisson foundations
Suryasentana, S. K. and Burd, H. J. and Byrne, B. W. and Shonberg, A. (2023) Small-strain, non-linear elastic Winkler models for uniaxial loading of suction caisson foundations. Geotechnique Letters, 13 (4). pp. 1-12. ISSN 2045-2543 (https://doi.org/10.1680/jgele.23.00043)
Preview |
Text.
Filename: Suryasentana_etal_GL_2023_Small_strain_non_linear_elastic_Winkler_models_for_uniaxial_loading_of_suction_caisson_foundations.pdf
Accepted Author Manuscript License: Strathprints license 1.0 Download (2MB)| Preview |
Abstract
Soils exhibit non-linear stress–strain behaviour, even at relatively low strain levels. Existing Winkler models for suction caisson foundations cannot capture this small-strain, non-linear soil behaviour. To address this issue, this paper describes a new non-linear elastic Winkler model for the uniaxial loading of suction caissons. The soil reaction curves employed in the model are formulated as scaled versions of the soil response as observed in standard laboratory tests (e.g. triaxial or simple shear tests). The scaling relationships needed to map the observed soil-element behaviour onto the soil reaction curves employed in the Winkler model are determined from an extensive numerical study employing three-dimensional finite-element analysis. Key features of the proposed Winkler model include: computational efficiency, wide applicability (it can be used for caisson design in clay, silt or sand) and design convenience (the required soil reaction curves can be determined straightforwardly from standard laboratory test results). The proposed model is suitable for small and intermediate caisson displacements (corresponding to fatigue and serviceability limit state conditions) but it is not applicable to ultimate limit state analyses.
ORCID iDs
Suryasentana, S. K. ORCID: https://orcid.org/0000-0001-5460-5089, Burd, H. J., Byrne, B. W. and Shonberg, A.;-
-
Item type: Article ID code: 86962 Dates: DateEvent31 December 2023Published5 October 2023Published Online11 September 2023Accepted25 May 2023SubmittedSubjects: Technology > Building construction
Technology > Engineering (General). Civil engineering (General)Department: Faculty of Engineering > Civil and Environmental Engineering Depositing user: Pure Administrator Date deposited: 13 Oct 2023 16:35 Last modified: 11 Nov 2024 14:06 URI: https://strathprints.strath.ac.uk/id/eprint/86962