Multi-objective model predictive control for microgrid applications

Naderi, Yahya and Hosseini, Seyed Hossein and zadeh, Saeid Ghassem and Savaghebi, Mehdi and Dahidah, Mohamed and Guerrero, Josep M. (2023) Multi-objective model predictive control for microgrid applications. International Journal of Electrical Power & Energy Systems, 154. 109441. ISSN 0142-0615 (https://doi.org/10.1016/j.ijepes.2023.109441)

[thumbnail of Naderi-etal-IJPES-2023-Multi-objective-model-predictive-control] Text. Filename: Naderi_etal_IJPES_2023_Multi_objective_model_predictive_control.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 21 August 2024.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Request a copy

Abstract

Integration of microgrids may introduce significant power quality challenges to the power distribution networks that may necessitate additional enforcement such as installing new Power Quality Improvement Devices (PQID), which is costly and not always possible option. This paper proposes a control approach that enables the existing power electronics devices within the microgrid to perform multiple functions to address the resultant power quality problems. The proposed method introduces flexibility in harmonic and fundamental power sharing and controlling switching frequency through an improved cost function. Grid connected operation-mode, harmonic compensation capabilities as well as improved dynamic response of controller to fast reference changes have been studied and experimentally verified on a microgrid prototype. Finally, the experimental results of the proposed control method are compared with the results from most recent relevant research activities in the field, evidencing its superiority as compared to the existing control methods presented in the literature.