Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

FE analysis of springback and secondary yielding effect during forward extrusion

Peng, X. and Qin, Y. and Balendra, R. (2003) FE analysis of springback and secondary yielding effect during forward extrusion. Journal of Materials Processing Technology, 135 (2-3). pp. 211-218. ISSN 0924-0136

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The response of the work-material during forward extrusion and the subsequent unloading process was analysed with a view to examining differences in prediction of component-form errors, when different constitutive models are used. Two types of constitutive models were adopted for the analysis-classical theory of plasticity (CP) with isotropic hardening and non-classical theory of plasticity (NCP). When compared the results of the CP model with the NCP model, the latter shows a slightly smaller maximum punch-force requirement, smaller diameter of the extrudate and larger contraction of the die during unloading. The significant difference in the predicted final dimensions of the extrudate with different constitutive models suggests that more accurate constitutive descriptions on the work-material have to be used for the analysis of component-form errors in precision forming, if more accurate results are to be achieved.