Harmonized multi-metric and multi-centric assessment of EEG source space connectivity for dementia characterization

Prado, Pavel and Mejía, Jhony A. and Sainz-Ballesteros, Agustín and Birba, Agustina and Moguilner, Sebastian and Herzog, Rubén and Otero, Mónica and Cuadros, Jhosmary and Z-Rivera, Lucía and O'Byrne, Daniel Franco and Parra Rodriguez, Mario and Ibáñez, Agustín (2023) Harmonized multi-metric and multi-centric assessment of EEG source space connectivity for dementia characterization. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 15 (3). e12455. ISSN 2352-8729 (https://doi.org/10.1002/dad2.12455)

[thumbnail of Prado-etal-DADM-2023-Harmonized-multi-metric-and-multi-centric-assessment-of-EEG-source-space]
Preview
Text. Filename: Prado_etal_DADM_2023_Harmonized_multi_metric_and_multi_centric_assessment_of_EEG_source_space.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial 4.0 logo

Download (5MB)| Preview

Abstract

Introduction -- Harmonization protocols that address batch effects and cross-site methodological differences in multi-center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. Methods -- We implemented an automatic processing pipeline incorporating electrode layout integrations, patient-control normalizations, and multi-metric EEG source space connectomics analyses. Results -- Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z-score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long-range connections, and diminished short-range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. Discussion --Harmonized multi-metric analysis of EEG source space connectivity can address data heterogeneities in multi-centric studies, representing a powerful tool for accurately characterizing dementia.

ORCID iDs

Prado, Pavel, Mejía, Jhony A., Sainz-Ballesteros, Agustín, Birba, Agustina, Moguilner, Sebastian, Herzog, Rubén, Otero, Mónica, Cuadros, Jhosmary, Z-Rivera, Lucía, O'Byrne, Daniel Franco, Parra Rodriguez, Mario ORCID logoORCID: https://orcid.org/0000-0002-2412-648X and Ibáñez, Agustín;