Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Joint layout, pipe size and hydraulic reliability optimization of water distribution systems

Tanyimboh, T. and Setiadi, Y. (2008) Joint layout, pipe size and hydraulic reliability optimization of water distribution systems. Engineering Optimization, 40 (8). pp. 729-747. ISSN 0305-215X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A multicriteria maximum-entropy approach to the joint layout, pipe size and reliability optimization of water distribution systems is presented. The capital cost of the system is taken as the principal criterion, and so the trade-offs between cost, entropy, reliability and redundancy are examined sequentially in a large population of optimal solutions. The novelty of the method stems from the use of the maximum-entropy value as a preliminary filter, which screens out a large proportion of the candidate layouts at an early stage of the process before the designs and their reliability values are actually obtained. This technique, which is based on the notion that the entropy is potentially a robust hydraulic reliability measure, contributes greatly to the efficiency of the proposed method. The use of head-dependent modelling for simulating pipe failure conditions in the reliability calculations also complements the method in locating the Pareto-optimal front. The computational efficiency, robustness, accuracy and other advantages of the proposed method are demonstrated by application to a sample network.