A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density

Jhong, Huei Ru Molly and Tornow, Claire E. and Smid, Bretislav and Gewirth, Andrew A. and Lyth, Stephen M. and Kenis, Paul J.A. (2017) A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density. ChemSusChem, 10 (6). pp. 1094-1099. ISSN 1864-564X (https://doi.org/10.1002/cssc.201600843)

[thumbnail of Jhong-etal-CPE2017-A-nitrogen-doped-carbon-catalyst-electrochemical-CO2-conversion-CO-high-selectivity-current-density]
Preview
Text. Filename: Jhong_etal_CPE2017_A_nitrogen_doped_carbon_catalyst_electrochemical_CO2_conversion_CO_high_selectivity_current_density.pdf
Accepted Author Manuscript

Download (701kB)| Preview

Abstract

We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H2 (approximately 98 % CO and 2 % H2), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=−1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm−2. The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO2 reduction as an approach to reduce atmospheric CO2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources.

ORCID iDs

Jhong, Huei Ru Molly, Tornow, Claire E., Smid, Bretislav, Gewirth, Andrew A., Lyth, Stephen M. ORCID logoORCID: https://orcid.org/0000-0001-9563-867X and Kenis, Paul J.A.;