Accelerated durability testing of fuel cell stacks for commercial automotive applications : a case study

Takahashi, Tsuyoshi and Ikeda, Takuya and Murata, Kazuya and Hotaka, Osamu and Shigeki Hasegawa, Hasegawa and Tachikawa, Yuya and Nishihara, Masamichi and Matsuda, Junko and Kitahara, Tatsumi and Lyth, Stephen M. and Hayashi, Akari and Sasaki, Kazunari (2022) Accelerated durability testing of fuel cell stacks for commercial automotive applications : a case study. Journal of the Electrochemical Society, 169 (4). 044523. ISSN 0013-4651 (https://doi.org/10.1149/1945-7111/ac662d)

[thumbnail of Takahashi-etal-JES-2022-Accelerated-durability-testing-of-fuel-cell-stacks]
Preview
Text. Filename: Takahashi_etal_JES_2022_Accelerated_durability_testing_of_fuel_cell_stacks.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB)| Preview

Abstract

System durability is crucially important for the successful commercialization of fuel cell electric vehicles (FCEVs). Conventional accelerated durability testing protocols employ relatively high voltage to hasten carbon corrosion and/or platinum catalyst degradation. However, high voltages are strictly avoided in commercialized FCEVs such as the Toyota MIRAI to minimize these degradation modes. As such, conventional durability tests are not representative of real-world FCEV driving conditions. Here, modified start-stop and load cycle durability tests are conducted on prototype fuel cell stacks intended for incorporation into commercial FCEVs. Polarization curves are evaluated at beginning of test (BOT) and end of test (EOT), and the degradation mechanisms are elucidated by separating the overvoltages at both 0.2 and 2.2 A cm-2. Using our modified durability protocols with a maximum cell voltage of 0.9 V, the prototype fuel cell stacks easily meet durability targets for automotive applications, corresponding to 15-year operation and 200,000 km driving range. These findings have been applied successfully in the development of new fuel cell systems for FCEVs, in particular the second-generation Toyota MIRAI.