Subspace shrinkage in conjugate Bayesian vector autoregressions
Huber, Florian and Koop, Gary (2022) Subspace shrinkage in conjugate Bayesian vector autoregressions. Journal of Applied Econometrics. ISSN 0883-7252 (In Press)
![]() |
Text.
Filename: Huber_Koop_JAE_2022_Subspace_shrinkage_in_conjugate_Bayesian_vector.pdf
Accepted Author Manuscript Restricted to Repository staff only until 25 September 2024. License: Strathprints license 1.0 Download (1MB) | Request a copy |
Abstract
Macroeconomists using large datasets often face the choice of working with either a large Vector Autoregression (VAR) or a factor model. In this paper, we develop methods for combining the two using a subspace shrinkage prior. Subspace priors shrink towards a class of functions rather than directly forcing the parameters of a model towards some pre-specified location. We develop a conjugate VAR prior which shrinks towards the subspace which is defined by a factor model. Our approach allows for estimating the strength of the shrinkage as well as the number of factors. After establishing the theoretical properties of our proposed prior, we carry out simulations and apply it to US macroeconomic data. Using simulations we show that our framework successfully detects the number of factors. In a forecasting exercise involving a large macroeconomic data set we find that combining VARs with factor models using our prior can lead to forecast improvements.
ORCID iDs
Huber, Florian and Koop, Gary
-
-
Item type: Article ID code: 82578 Dates: DateEvent25 September 2022Published25 September 2022AcceptedKeywords: subspace shrinkage, reduced rank regression, Bayesian VAR, Economic Theory, Economics and Econometrics, Social Sciences (miscellaneous) Subjects: Social Sciences > Economic Theory Department: Strathclyde Business School > Economics Depositing user: Pure Administrator Date deposited: 05 Oct 2022 09:47 Last modified: 18 Jan 2023 11:42 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/82578