Automatic extraction of pharmaceutical manufacturing data from patents using Natural Language Processing (NLP)
Alvarado, D. and Johnston, B. and Brown, C. (2022) Automatic extraction of pharmaceutical manufacturing data from patents using Natural Language Processing (NLP). In: CMAC Annual Open Day 2022, 2022-05-16 - 2022-05-18.
Preview |
Text.
Filename: Alvarado_etal_CMAC_2022_Automatic_extraction_of_pharmaceutical_manufacturing_data_from_patents.pdf
Final Published Version License: Strathprints license 1.0 Download (1MB)| Preview |
Abstract
Introduction • Deep generative models (DGM) are models capable of generating realistic samples and learning hidden information • DGM used in drug discovery to generate new molecular entities with desirable biological and chemical properties • Applications in pharmaceutical manufacturing have not been fully explored • Potential Benefits of DGM - Aid process design by generating a feasible chain of unit operations for the production of an API/dosage forms - Improve process understanding through the utilisation of latent variables that may be correlated to process parameters. • Thousands of data are required to develop a model • No database that consolidates this information available in literature to be used in DGM for primary or secondary manufacturing domain
ORCID iDs
Alvarado, D., Johnston, B. ORCID: https://orcid.org/0000-0001-9785-6822 and Brown, C. ORCID: https://orcid.org/0000-0001-7091-1721;Persistent Identifier
https://doi.org/10.17868/strath.00081748-
-
Item type: Conference or Workshop Item(Poster) ID code: 81748 Dates: DateEvent16 May 2022PublishedSubjects: Medicine > Therapeutics. Pharmacology Department: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Pure Administrator Date deposited: 08 Aug 2022 09:55 Last modified: 11 Nov 2024 17:06 URI: https://strathprints.strath.ac.uk/id/eprint/81748