Parameterisation of domain knowledge for rapid and iterative prototyping of knowledge-based systems

Young, Andrew and West, Graeme and Brown, Blair and Stephen, Bruce and Duncan, Andrew and Michie, Craig and McArthur, Stephen D.J. (2022) Parameterisation of domain knowledge for rapid and iterative prototyping of knowledge-based systems. Expert Systems with Applications, 208. 118169. ISSN 0957-4174 (https://doi.org/10.1016/j.eswa.2022.118169)

[thumbnail of Young-etal-ESA-2022-Parameterisation-of-domain-knowledge-for-rapid-and-iterative]
Preview
Text. Filename: Young_etal_ESA_2022_Parameterisation_of_domain_knowledge_for_rapid_and_iterative.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (2MB)| Preview

Abstract

In critical infrastructure applications, timely and consistent fault detection and diagnosis is an increasingly important operational process, especially in the energy sector where safety is of the utmost importance. To realise this, engineers have to manually analyse data acquired from several assets using predefined diagnostic processes, but this is a time-consuming process requiring significant amounts of specialist expert knowledge. Data-driven approaches to support fault detection and diagnosis, and other similar problems, can produce accurate results comparable to what the engineers can achieve in a fraction of the time. However, the majority of these data-driven techniques are black box techniques and lack explainability which is often necessary for explaining decisions about critical assets in the power generation industry. Knowledge-based systems, such as rule-based expert systems have been shown to provide not only accurate decisions but also the explanation and reasoning behind these decisions in some related applications. However, there is a significant time cost associated with the development of knowledge-based systems, and in particular with the knowledge elicitation process, where the domain expert’s knowledge is formalised and is encoded into the system. This challenge is commonly referred to as the knowledge elicitation bottleneck. In this paper, we present a novel approach to performing the knowledge elicitation using a set of symbolic primitives (rise, fall, fluctuate, and stable) to parameterise typical time-series condition monitoring data. The knowledge is represented by using a common language that can easily be communicated with (and from) the domain experts. This allows for the quick and accurate elicitation of the domain experts knowledge, but also the formalisation and implementation of the knowledge into a rapidly produced diagnostic system. Further to this, due to the parametrisation of the knowledge, it is possible to iteratively improve the knowledge base by updating these parameters based on new unseen data. This approach was applied to the Tennessee Eastman dataset, which is simulated data of a real-world industrial process. It was found that by using this approach it was possible to accurately and quickly capture the knowledge required to detect several faults within the case study dataset, but also provided fully explained reasons why each fault was detected by relating the explanations to the symbolic primitives previously defined.

ORCID iDs

Young, Andrew ORCID logoORCID: https://orcid.org/0000-0001-6338-6631, West, Graeme ORCID logoORCID: https://orcid.org/0000-0003-0884-6070, Brown, Blair, Stephen, Bruce ORCID logoORCID: https://orcid.org/0000-0001-7502-8129, Duncan, Andrew, Michie, Craig ORCID logoORCID: https://orcid.org/0000-0001-5132-4572 and McArthur, Stephen D.J. ORCID logoORCID: https://orcid.org/0000-0003-1312-8874;