Can you still see me? Reconstructing robot operations over end-to-end encrypted channels
Shah, Ryan and Ahmed, Chuadhry Mujeeb and Nagaraja, Shishir (2022) Can you still see me? Reconstructing robot operations over end-to-end encrypted channels. Other. arXiv.org, Ithaca, NY. (https://doi.org/10.48550/arXiv.2205.08426)
Preview |
Text.
Filename: Shah_etal_arXiv_2022_Can_you_still_see_me_reconstructing_robot_operations_over_end_to_end_encrypted_channels.pdf
Preprint License: Download (1MB)| Preview |
Abstract
Connected robots play a key role in Industry 4.0, providing automation and higher efficiency for many industrial workflows. Unfortunately, these robots can leak sensitive information regarding these operational workflows to remote adversaries. While there exists mandates for the use of end-to-end encryption for data transmission in such settings, it is entirely possible for passive adversaries to fingerprint and reconstruct entire workflows being carried out -- establishing an understanding of how facilities operate. In this paper, we investigate whether a remote attacker can accurately fingerprint robot movements and ultimately reconstruct operational workflows. Using a neural network approach to traffic analysis, we find that one can predict TLS-encrypted movements with around 60% accuracy, increasing to near-perfect accuracy under realistic network conditions. Further, we also find that attackers can reconstruct warehousing workflows with similar success. Ultimately, simply adopting best cybersecurity practices is clearly not enough to stop even weak (passive) adversaries.
ORCID iDs
Shah, Ryan ORCID: https://orcid.org/0000-0003-1348-8423, Ahmed, Chuadhry Mujeeb ORCID: https://orcid.org/0000-0003-3644-0465 and Nagaraja, Shishir;-
-
Item type: Monograph(Other) ID code: 81548 Dates: DateEvent17 May 2022Published17 May 2022SubmittedSubjects: Science > Mathematics > Electronic computers. Computer science Department: Faculty of Science > Computer and Information Sciences Depositing user: Pure Administrator Date deposited: 22 Jul 2022 09:10 Last modified: 11 Nov 2024 16:07 URI: https://strathprints.strath.ac.uk/id/eprint/81548