Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Temperature jump and slip velocity calculations from an anisotropic scattering kernel

Dadzie, S.K. and Méolens, J.G. (2005) Temperature jump and slip velocity calculations from an anisotropic scattering kernel. Physica A: Statistical Mechanics and its Applications, 358 (2-4). pp. 328-346. ISSN 0378-4371

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This article deals with the problem of temperature jump and slip velocity at the wall in gas/surface interaction. A consistent modelling of an impermeable surface involving an anisotropic scattering kernel developed in previous works is used to establish boundary conditions in unstructured molecule gas flows. Thus a temperature jump relation is derived in which the gas viscous effects at the wall and the mean velocity gradients appear. Likewise, a slip velocity relation is obtained in which both the slip coefficient and the thermal creep coefficient depend on the wall-to-gas temperature ratio. Moreover, both the temperature jump and the slip velocity relations involve not only one accommodation coefficient as in usual expressions, but also the gas/surface information through the various (notably normal and tangential) accommodation coefficients of the momentum components.