Simulating quantum repeater strategies for multiple satellites

Wallnöfer, Julius and Hahn, Frederik and Gündoğan, Mustafa and Sidhu, Jasminder S. and Wiesner, Fabian and Walk, Nathan and Eisert, Jens and Wolters, Janik (2022) Simulating quantum repeater strategies for multiple satellites. Communications Physics, 5 (1). 169. ISSN 2399-3650 (https://doi.org/10.1038/s42005-022-00945-9)

[thumbnail of Wallnofer-etal-CP-2022-Simulating-quantum-repeater-strategies-for-multiple-satellites]
Preview
Text. Filename: Wallnofer_etal_CP_2022_Simulating_quantum_repeater_strategies_for_multiple_satellites.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

A global quantum repeater network involving satellite-based links is likely to have advantages over fiber-based networks in terms of long-distance communication, since the photon losses in vacuum scale only polynomially with the distance – compared to the exponential losses in optical fibers. To simulate the performance of such networks, we have introduced a scheme of large-scale event-based Monte Carlo simulation of quantum repeaters with multiple memories that can faithfully represent loss and imperfections in these memories. In this work, we identify the quantum key distribution rates achievable in various satellite and ground station geometries for feasible experimental parameters. The power and flexibility of the simulation toolbox allows us to explore various strategies and parameters, some of which only arise in these more complex, multi-satellite repeater scenarios. As a primary result, we conclude that key rates in the kHz range are reasonably attainable for intercontinental quantum communication with three satellites, only one of which carries a quantum memory.

ORCID iDs

Wallnöfer, Julius, Hahn, Frederik, Gündoğan, Mustafa, Sidhu, Jasminder S. ORCID logoORCID: https://orcid.org/0000-0002-6167-8224, Wiesner, Fabian, Walk, Nathan, Eisert, Jens and Wolters, Janik;