Enhancing circularity in the car sharing industry : reverse supply chain network design optimisation for reusable car frames

Rentizelas, Athanasios and Trivyza, Nikoletta L. (2022) Enhancing circularity in the car sharing industry : reverse supply chain network design optimisation for reusable car frames. Sustainable Production and Consumption, 32. pp. 863-879. ISSN 2352-5509 (https://doi.org/10.1016/j.spc.2022.06.009)

[thumbnail of Rentizelas-Trivyza-SPC-2022-Enhancing-circularity-in-the-car-sharing-industry]
Text. Filename: Rentizelas_Trivyza_SPC_2022_Enhancing_circularity_in_the_car_sharing_industry.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (3MB)| Preview


The transportation sector is a great contributor of global carbon emissions, thus technical, regulatory, and behavioural efforts are being made to move towards more sustainable mobility, reducing the sector's environmental impact. Among the proposed solutions, car sharing is an appealing alternative for both environmental and societal reasons. However, society is facing another challenge with the rapid increase of vehicles that have reached the end of their life. As a result, regulatory initiatives drive car manufacturers towards a circular economy paradigm that incorporates reuse, remanufacturing and recycling processes in their supply chains. This work proposes and optimises the design of a reverse supply chain that enables circular economy pathways for the automotive sector with particular focus on car sharing vehicles' components that are reusable. Car sharing vehicles are selected due to their high mileage, short service life and rapidly increasing demand. This is the first work that identifies optimal reverse supply chains for reusable car sharing vehicle parts. The particular investigated case study involves a reusable and remanufacturable carbon fiber reinforced polymer car frame, which is selected due to its long-life span and light weight properties. The results indicate that the per unit and overall system cost is minimised when the percentage of frames remanufactured increases, thus efforts are required regarding the design of frames with remanufacturability in mind. The impact of economies of scale in cost reduction is demonstrated. Finally, the reusable frame appears to be advantageous compared to the single use one both environmentally and economically.