Mechanical degradation behavior of single crystal LiNixMnyCozO2 cathode in li-ion battery by indentation analysis
Chen, Ying and Luan, Weiling and Zhu, Xuanchen and Chen, Haofeng (2022) Mechanical degradation behavior of single crystal LiNixMnyCozO2 cathode in li-ion battery by indentation analysis. Journal of Pressure Vessel Technology, 144 (5). 051505. ISSN 0094-9930 (https://doi.org/10.1115/1.4053530)
Preview |
Text.
Filename: Chen_etal_JPVT_2022_Mechanical_degradation_behavior_of_single_crystal_LiNixMnyCozO2_cathode_in_li_ion_battery.pdf
Accepted Author Manuscript License: Download (5MB)| Preview |
Abstract
LiNixMnyCozO2 (NMC) is among the most promising cathode materials for commercial Li-ion batteries due to its high electrochemical performance. However, NMC composite cathode is still plagued with limited cyclic performance, which is influenced by its structural stability during the cycling process. The cathode, which comprises of the active material, polymeric binder, and porous conductive matrix, often exhibits large structural variation during the electrochemical cycling process. This inevitably increases the challenge of measuring the mechanical properties of the material. Even though single crystal NMC possesses better stability as compared to the polycrystalline NMC, the electrochemical performance degradation of single crystal NMC cathode remains relatively unexplored. Different sample preparation methods are compared systematically in accordance to the previous report, and a new method of sample preparation is proposed. Nanoindentation instrument is used to measure the elastic modulus and hardness of the single crystal NMC particles. The measured elastic modulus and hardness of NMC particles, under different electrochemical environments, are dependent on a large number of nanoindentation experiments and statistical analysis of the result obtained from the carefully prepared samples. The sample preparation method is the key factor that can significantly influence the nanoindentation experiment results of the NMC particles. This work shows that the mechanical properties of the single crystal NMC particles degrade significantly with number of electrochemical cycles. The decreasing elastic modulus with the number of electrochemical cycles can be fitted using a two-parameter logarithm model.
ORCID iDs
Chen, Ying, Luan, Weiling, Zhu, Xuanchen and Chen, Haofeng ORCID: https://orcid.org/0000-0001-6864-4927;-
-
Item type: Article ID code: 79827 Dates: DateEvent14 February 2022Published12 January 2022Published Online22 December 2021AcceptedSubjects: Technology > Chemical engineering
Technology > Mechanical engineering and machineryDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering Depositing user: Pure Administrator Date deposited: 07 Mar 2022 09:49 Last modified: 01 Sep 2024 01:33 URI: https://strathprints.strath.ac.uk/id/eprint/79827