Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Analysis of a combined photovoltaic-geothermal gas-fired absorption heat pump system in a Canadian climate

Kummert, M. and Bernier, M. (2008) Analysis of a combined photovoltaic-geothermal gas-fired absorption heat pump system in a Canadian climate. Journal of Building Performance Simulation, 1 (4). pp. 245-256. ISSN 1940-1493

Full text not available in this repository.Request a copy from the Strathclyde author


This study examines the technical feasibility of using a geothermal gas-fired absorption heat pump (A-GSHP) for space conditioning and domestic hot water heating in a Canadian climate. The A-GSHP is coupled to a photovoltaic (PV) system with battery storage intended to ensure the full autonomy of the heating, ventilating and air conditioning (HVAC) system from the electric grid. The system is modelled using TRNSYS with standard models and a new performance-based A-GSHP model, which accounts for part-load operation. Results indicate that the coefficient of performance (COP) is equal to 1.12, 0.55 and 1.79 for heating only, cooling only and simultaneous cooling and domestic hot water (DHW) heating, respectively. A 13.5 kWp PV array and a 400 kWh battery storage are necessary to provide the electrical power required to operate the A-GSHP and the associated HVAC system at all times without importing electrical energy from the grid.