Ancilla-driven quantum computation for qudits and continuous variables
Proctor, Timothy and Giulian, Melissa and Korolkova, Natalia and Andersson, Erika and Kendon, Viv (2017) Ancilla-driven quantum computation for qudits and continuous variables. Physical Review A, 95 (5). 052317. ISSN 2469-9926 (https://doi.org/10.1103/PhysRevA.95.052317)
Preview |
Text.
Filename: Proctor_etal_PRA_2017_Ancilla_driven_quantum_computation_for_qudits_and_continuous_variables.pdf
Final Published Version Download (567kB)| Preview |
Abstract
Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general "quantum variable" formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated "quantum memory" register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.
ORCID iDs
Proctor, Timothy, Giulian, Melissa, Korolkova, Natalia, Andersson, Erika and Kendon, Viv ORCID: https://orcid.org/0000-0002-6551-3056;-
-
Item type: Article ID code: 78938 Dates: DateEvent10 May 2017Published27 February 2017AcceptedSubjects: Science > Physics
Science > Mathematics > Electronic computers. Computer scienceDepartment: Faculty of Science > Physics Depositing user: Pure Administrator Date deposited: 16 Dec 2021 14:19 Last modified: 11 Nov 2024 13:19 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/78938