Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma

Lee, C.L. and Gu, E. and Dawson, M.D. and Friel, I. and Scarsbrook, G. (2008) Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma. Diamond and Related Materials, 17 (7-10). pp. 1292-1296. ISSN 0925-9635

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The effect of Inductively-Coupled Plasma (ICP) etching on diamond using chlorine-based plasma has been investigated. The diamond materials studied include type IIa natural diamond, High Pressure and High Temperature (HPHT) diamond and Chemical Vapour Deposition (CVD) diamond. It was found that argon and chlorine (Ar/Cl2) ICP plasma etching can improve the smoothness of the diamond surface. By using this method, a minimum root-mean-squared (rms) surface roughness of 0.19 nm has been achieved. To demonstrate optimized Ar/Cl2 plasma etching, diamond spherical micro-lenses and micro-trenches were fabricated. Compared to argon and oxygen (Ar/O2) plasma etching, Ar/Cl2 plasma etching has a low selectivity with respect to the photo-resist mask, which enables an accurate control over the dimensions of the microstructures fabricated. The surface quality and profiles of these micro-lenses and micro-trenches were characterized by atomic force microscopy (AFM) and were shown to be better than those fabricated by Ar/O2 ICP plasma.