Thermally reactive N-(2-hydroxypropyl)methacrylamide (HPMA) amphiphiles for drug solubilisation

Alsuraifi, Ali and Mathew, Essyrose and Lamprou, Dimitrios A. and Curtis, Anthony and Hoskins, Clare (2021) Thermally reactive N-(2-hydroxypropyl)methacrylamide (HPMA) amphiphiles for drug solubilisation. International Journal of Pharmaceutics, 601. 120570. ISSN 0378-5173

[thumbnail of Hoskins-etal-2021-IJOP-Thermally-reactive-N-(2-hydroxypropyl)methacrylamide-(HPMA)-amphiphiles-for-drug-solubilisation] Text (Hoskins-etal-2021-IJOP-Thermally-reactive-N-(2-hydroxypropyl)methacrylamide-(HPMA)-amphiphiles-for-drug-solubilisation)
Hoskins_etal_2021_IJOP_Thermally_reactive_N_2_hydroxypropyl_methacrylamide_HPMA_amphiphiles_for_drug_solubilisation.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 2 April 2022.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (628kB) | Request a copy from the Strathclyde author

    Abstract

    Thermally active polymers, can respond structurally to temperature changes, making them interesting as potential drug delivery vehicles. Polymers of N-(3-aminopropyl) methacrylamide hydrochloride (APMA) are cationic with primary amine groups in their structure, which have been explored in biomedical applications via post-polymerisation modifications. In this work, we synthesised amphiphilic APMA monomers using hydrophobic pendant groups via conjugation onto their primary amine group. The pendant groups chosen in this study were palmitoyl, dansyl and cholesteryl moieties. The amphiphilic monomers were subsequently copolymerized with N-(2-hydroxypropyl)methacrylamide (HPMA) using varied monomer feed ratios resulting in a thermo-responsive system. The ability of the resultant aggregates in aqueous solution to encapsulate and liberate model drugs (e.g., propofol, griseofulvin and prednisolone) was then determined. Our data showed that the HPMA based formulations were capable of loading the model drug molecules inside their lipophilic core; HPMA-co-(APMA-Dansyl 2%) exhibited the largest drug encapsulation ability. Subsequently, poly(ethylene glycol) (PEG) was incorporated into the intrinsic polymer structure. This resulted in a more rapid drug release profile, whereby 100% of griseofulvin and prednisolone were liberated after only 4 h, which was only 5% and 10% before the PEG inclusion, respectively. Similarly, propofol showed 70% liberation from the polymer aggregate after 24 h, compared with only 30% liberation pre-PEGylation. These studies give an insight into the potential of the HMPA based amphiphiles as thermally responsive cargo carrier/release systems which could be exploited in the delivery of poorly soluble drugs.