Design and Implementation of Real-Time Cognitive Dynamic Spectrum Radio, Targeting the FM Radio Band with PHYDYAS FS-FBMC

Barlee, Kenneth W. and Stewart, Robert and Crockett, Louise Helen (2021) Design and Implementation of Real-Time Cognitive Dynamic Spectrum Radio, Targeting the FM Radio Band with PHYDYAS FS-FBMC. PhD thesis, University Of Strathclyde.

[thumbnail of Barlee-2021-Design-and-implementation-of-real-time-cognitive-dynamic-spectrum-radio]
Text. Filename: Barlee_2021_Design_and_implementation_of_real_time_cognitive_dynamic_spectrum_radio.pdf
Final Published Version

Download (17MB)| Preview


Demand for wireless connectivity is exponentially increasing. Allocated bands in the Radio Frequency (RF) spectrum are commonly presented as being nearly at capacity, but in reality, they are often under-utilised. New shared spectrum regulations, combined with Dynamic Spectrum Access (DSA) technologies and Software Defined Radio (SDR) allow third parties to access vacant spectrum that has been traditionally licensed to broadcasters and mobile network operators. Regulators and research institutions worldwide are actively exploring the sharing of finite spectral resources, driving a wireless revolution that will bring lower cost and ubiquitous connectivity. This thesis presents and validates a disruptive new spectrum sharing technique that facilitates access to the significant amount of vacant spectrum in the band traditionally used for analogue FM Radio broadcasting (88-108 MHz), providing a potential communications solution for load balancing and demand side management in smart grid networks. In this work, a novel, real-time DSA-enabled radio transmitter is designed, implemented, and targeted to programmable ‘ZynqSDR’ hardware, and investigations are carried out to determine whether it is capable of coexisting with incumbent FM Radio stations. The transmitter uses the Frequency Spread Filter Bank Multicarrier (FS-FBMC) modulation scheme—which has low levels of Out-Of-Band (OOB) leakage—and a non-contiguous subchannel mask, which can automatically reconfigure itself in real time to change the spectral characteristics of the output signal. It was developed using low level Digital Signal Processing (DSP) components from within MATLAB and Simulink. The FBMC Secondary User (SU) radio was shown to cause minimal interference to FM Radio stations when ‘transmitting’ at low broadcast powers (e.g. 20 dBm) and using a 200 kHz guardband, indicating that an SU such as the one proposed in this thesis would be capable of legally coexisting with (and transmit alongside) incumbent FM Radio signals; provided radio spectrum regulations were modified to permit legal operation.