Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles
Liu, Yanan and Zografos, Konstantinos and Fidalgo, Joana and Duchêne, Charles and Quintard, Clément and Darnige, Thierry and Filipe, Vasco and Huille, Sylvain and du Roure, Olivia and Oliveira, Monica S. N. and Lindner, Anke (2020) Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles. Soft Matter, 16 (43). pp. 9844-9856. ISSN 1744-6848
![]() |
Text (Liu-etal-SM-2020-Optimised-hyperbolic-microchannels-for-the-mechanical-characterisation)
Liu_etal_SM_2020_Optimised_hyperbolic_microchannels_for_the_mechanical_characterisation.pdf Accepted Author Manuscript Restricted to Repository staff only until 15 September 2021. Download (12MB) | Request a copy from the Strathclyde author |
Abstract
The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging–diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.
Creators(s): |
Liu, Yanan, Zografos, Konstantinos ![]() ![]() ![]() | Item type: | Article |
---|---|
ID code: | 74827 |
Keywords: | viscous flow, microfluidic devices, shear flow, Mechanical engineering and machinery, Mechanical Engineering |
Subjects: | Technology > Mechanical engineering and machinery |
Department: | Faculty of Engineering > Mechanical and Aerospace Engineering Strategic Research Themes > Ocean, Air and Space Technology and Innovation Centre > Advanced Engineering and Manufacturing |
Depositing user: | Pure Administrator |
Date deposited: | 08 Dec 2020 16:54 |
Last modified: | 15 Feb 2021 12:54 |
URI: | https://strathprints.strath.ac.uk/id/eprint/74827 |
Export data: |