Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles

Liu, Yanan and Zografos, Konstantinos and Fidalgo, Joana and Duchêne, Charles and Quintard, Clément and Darnige, Thierry and Filipe, Vasco and Huille, Sylvain and du Roure, Olivia and Oliveira, Monica S. N. and Lindner, Anke (2020) Optimised hyperbolic microchannels for the mechanical characterisation of bio-particles. Soft Matter, 16 (43). pp. 9844-9856. ISSN 1744-6848

[img] Text (Liu-etal-SM-2020-Optimised-hyperbolic-microchannels-for-the-mechanical-characterisation)
Accepted Author Manuscript
Restricted to Repository staff only until 15 September 2021.

Download (12MB) | Request a copy from the Strathclyde author


    The transport of bio-particles in viscous flows exhibits a rich variety of dynamical behaviour, such as morphological transitions, complex orientation dynamics or deformations. Characterising such complex behaviour under well controlled flows is key to understanding the microscopic mechanical properties of biological particles as well as the rheological properties of their suspensions. While generating regions of simple shear flow in microfluidic devices is relatively straightforward, generating straining flows in which the strain rate is maintained constant for a sufficiently long time to observe the objects' morphologic evolution is far from trivial. In this work, we propose an innovative approach based on optimised design of microfluidic converging–diverging channels coupled with a microscope-based tracking method to characterise the dynamic behaviour of individual bio-particles under homogeneous straining flow. The tracking algorithm, combining a motorised stage and a microscopy imaging system controlled by external signals, allows us to follow individual bio-particles transported over long-distances with high-quality images. We demonstrate experimentally the ability of the numerically optimised microchannels to provide linear velocity streamwise gradients along the centreline of the device, allowing for extended consecutive regions of homogeneous elongation and compression. We selected three test cases (DNA, actin filaments and protein aggregates) to highlight the ability of our approach for investigating dynamics of objects with a wide range of sizes, characteristics and behaviours of relevance in the biological world.