Hydrothermal synthesis of zeolite production from coal fly ash : a heuristic approach and its optimization for system identification of conversion

Tauanov, Zhandos and Shah, Dhawal and Inglezakis, Vassilis and Jamwal, Prashant K. (2018) Hydrothermal synthesis of zeolite production from coal fly ash : a heuristic approach and its optimization for system identification of conversion. Journal of Cleaner Production, 182. pp. 616-623. ISSN 0959-6526

[thumbnail of Tauanov-etal-JCP-2018-Hydrothermal-synthesis-of-zeolite-production-from-coal-fly-ash]
Preview
Text (Tauanov-etal-JCP-2018-Hydrothermal-synthesis-of-zeolite-production-from-coal-fly-ash)
Tauanov_etal_JCP_2018_Hydrothermal_synthesis_of_zeolite_production_from_coal_fly_ash.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB)| Preview

    Abstract

    Commercialization of synthetic zeolites has given considerable impetus to optimization of its production routes. The preferred production route involves hydrothermal treatment of coal fly ash in a strong alkali solution. The process involves several parameters, such as reaction temperature, time, the concentration and amount of alkali solution, and silica content in the fly ash, all of which strongly and non-monotonically affect the conversion. We herein perform several experiments with the Kazakhstani fly ash, and obtained a highest conversion of zeolites of 78% using 3 M NaOH at 110 °C. Further, we propose a conversion model using zero-order Takagi-Sugeno fuzzy system to analyze the effect of individual process parameters on conversion, and thereby, the reaction mechanism(s) of zeolite formation. The model is designed and developed, using the data, both from literature and our experiments on Kazakhstani fly ash. The obtained results clearly illustrate that the model accurately predict the conversion percentage of zeolite for a given set of reaction parameters. The model is further optimized to provide accurate inferences and an average deviation between the model predictions and experimental values for zeolite yield is observed to be less than 5%.

    ORCID iDs

    Tauanov, Zhandos, Shah, Dhawal, Inglezakis, Vassilis ORCID logoORCID: https://orcid.org/0000-0002-0195-0417 and Jamwal, Prashant K.;