Towards intelligent control via genetic programming

Marchetti, Francesco and Minisci, Edmondo and Riccardi, Annalisa; (2020) Towards intelligent control via genetic programming. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, GBR. ISBN 9781728169279

[img]
Preview
Text (Marchetti-etal-WCCI-2020-Towards-intelligent-control-via-genetic)
Marchetti_etal_WCCI_2020_Towards_intelligent_control_via_genetic.pdf
Accepted Author Manuscript

Download (1MB)| Preview

    Abstract

    In this paper an initial approach to Intelligent Control (IC) using Genetic Programming (GP) for access to space applications is presented. GP can be employed successfully to design a controller even for complex systems, where classical controllers fail because of the high nonlinearity of the systems. The main property of GP, that is its ability to autonomously create explicit mathematical equations starting from a very poor knowledge of the considered plant, or just data, can be exploited for a vast range of applications. Here, GP has been used to design the control law in an Intelligent Control framework for a modified version of the Goddard Rocket problem in 3 different failure scenarios, where the approach to IC consists in an online re-evaluation of the control law using GP when a considerably big change in the environment or in the plant happens. The presented results are then used to highlight the potential benefits of the method, as well as aspects that will need further developments.