Learning weighted automata over principal ideal domains

van Heerdt, Gerco and Kupke, Clemens and Rot, Jurriaan and Silva, Alexandra; Goubault-Larrecq, Jean and König, Barbara, eds. (2020) Learning weighted automata over principal ideal domains. In: Foundations of Software Science and Computation Structures. Lecture Notes in Computer Science . Springer, IRL, pp. 602-621. ISBN 978-3-030-45231-5 (https://doi.org/10.1007/978-3-030-45231-5_31)

[thumbnail of van-Heerdt-etal-FOSSACS-2020-Learning-weighted-automata-over-principle]
Text. Filename: van_Heerdt_etal_FOSSACS_2020_Learning_weighted_automata_over_principle.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB)| Preview


In this paper, we study active learning algorithms for weighted automata over a semiring. We show that a variant of Angluin’s seminal L⋆ algorithm works when the semiring is a principal ideal domain, but not for general semirings such as the natural numbers.