Learning weighted automata over principal ideal domains
van Heerdt, Gerco and Kupke, Clemens and Rot, Jurriaan and Silva, Alexandra; Goubault-Larrecq, Jean and König, Barbara, eds. (2020) Learning weighted automata over principal ideal domains. In: Foundations of Software Science and Computation Structures. Lecture Notes in Computer Science . Springer, IRL, pp. 602-621. ISBN 978-3-030-45231-5
|
Text (van-Heerdt-etal-FOSSACS-2020-Learning-weighted-automata-over-principle)
van_Heerdt_etal_FOSSACS_2020_Learning_weighted_automata_over_principle.pdf Final Published Version License: ![]() Download (5MB)| Preview |
Official URL: https://doi.org/10.1007/978-3-030-45231-5_31
Abstract
In this paper, we study active learning algorithms for weighted automata over a semiring. We show that a variant of Angluin’s seminal L⋆ algorithm works when the semiring is a principal ideal domain, but not for general semirings such as the natural numbers.
Creators(s): | van Heerdt, Gerco, Kupke, Clemens, Rot, Jurriaan and Silva, Alexandra; Goubault-Larrecq, Jean and König, Barbara | Item type: | Book Section |
---|---|
ID code: | 72497 |
Keywords: | weighted automata, automata learning, Electronic computers. Computer science, Computational Theory and Mathematics |
Subjects: | Science > Mathematics > Electronic computers. Computer science |
Department: | Faculty of Science > Computer and Information Sciences |
Depositing user: | Pure Administrator |
Date deposited: | 28 May 2020 11:19 |
Last modified: | 20 Jan 2021 16:21 |
Related URLs: | |
URI: | https://strathprints.strath.ac.uk/id/eprint/72497 |
Export data: |
CORE (COnnecting REpositories)