Rapid and continuous regulating adhesion strength by mechanical micro-vibration
Shui, Langquan and Jia, Laibing and Li, Hangbo and Guo, Jiaojiao and Guo, Ziyu and Liu, Yilun and Liu, Ze and Chen, Xi (2020) Rapid and continuous regulating adhesion strength by mechanical micro-vibration. Nature Communications, 11 (1). 1583. ISSN 2041-1723 (https://doi.org/10.1038/s41467-020-15447-x)
Preview |
Text.
Filename: Shui_etal_NC_2020_Rapid_and_continuous_regulating_adhesion_strength.pdf
Final Published Version License: Download (2MB)| Preview |
Abstract
Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2×10^7 vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications.
ORCID iDs
Shui, Langquan, Jia, Laibing ORCID: https://orcid.org/0000-0003-1327-5516, Li, Hangbo, Guo, Jiaojiao, Guo, Ziyu, Liu, Yilun, Liu, Ze and Chen, Xi;-
-
Item type: Article ID code: 71921 Dates: DateEvent27 March 2020Published12 March 2020AcceptedSubjects: Technology > Mechanical engineering and machinery Department: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering Depositing user: Pure Administrator Date deposited: 27 Mar 2020 16:46 Last modified: 20 Jan 2025 14:36 URI: https://strathprints.strath.ac.uk/id/eprint/71921