Statistical post-processing of turbulence-resolving weather forecasts for offshore wind power forecasting
Gilbert, Ciaran and Messner, Jakob W. and Pinson, Pierre and Trombe, Pierre-Julien and Verzijlbergh, Remco and van Dorp, Pim and Jonker, Harmen (2019) Statistical post-processing of turbulence-resolving weather forecasts for offshore wind power forecasting. Wind Energy. ISSN 1095-4244 (https://doi.org/10.1002/we.2456)
Preview |
Text.
Filename: Gilbert_etal_Wind_Energy_2020_Statistical_post_processing_of_turbulence_resolving_weather_forecasts_for_offshore_wind.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
Accurate short-term power forecasts are crucial for the reliable and efficient integration of wind energy in power systems and electricity markets. Typically, forecasts for hours to days ahead are based on the output of numerical weather prediction models, and with the advance of computing power, the spatial and temporal resolutions of these models have increased substantially. However, high-resolution forecasts often exhibit spatial and/or temporal displacement errors, and when regarding typical average performance metrics, they often perform worse than smoother forecasts from lower-resolution models. Recent computational advances have enabled the use of large-eddy simulations (LESs) in the context of operational weather forecasting, yielding turbulence-resolving weather forecasts with a spatial resolution of 100 m or finer and a temporal resolution of 30 seconds or less. This paper is a proof-of-concept study on the prospect of leveraging these ultra high-resolution weather models for operational forecasting at Horns Rev I in Denmark. It is shown that temporal smoothing of the forecasts clearly improves their skill, even for the benchmark resolution forecast, although potentially valuable high-frequency information is lost. Therefore, a statistical post-processing approach is explored on the basis of smoothing and feature engineering from the high-frequency signal. The results indicate that for wind farm forecasting, using information content from both the standard and LES resolution models improves the forecast accuracy, especially with a feature selection stage, compared with using the information content solely from either source.
ORCID iDs
Gilbert, Ciaran ORCID: https://orcid.org/0000-0001-6114-7880, Messner, Jakob W., Pinson, Pierre, Trombe, Pierre-Julien, Verzijlbergh, Remco, van Dorp, Pim and Jonker, Harmen;-
-
Item type: Article ID code: 70770 Dates: DateEvent17 December 2019Published17 December 2019Published Online5 November 2019AcceptedNotes: This is the peer reviewed version of the following article: Gilbert, C., Messner, J. W., Pinson, P., Trombe, P-J., Verzijlbergh, R., van Dorp, P., & Jonker, H. (2019). Statistical post-processing of turbulence-resolving weather forecasts for offshore wind power forecasting. Wind Energy, which has been published in final form at https://doi.org/10.1002/we.2456. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 11 Dec 2019 10:22 Last modified: 01 Jan 2025 07:16 URI: https://strathprints.strath.ac.uk/id/eprint/70770