Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Design and evaluation of a MEMS optical chopper for fibre optic applications

Li, L. and Uttamchandani, D.G. (2004) Design and evaluation of a MEMS optical chopper for fibre optic applications. IEE Proceedings Science Measurement and Technology, 151 (2). pp. 77-84. ISSN 1350-2344

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The design and evaluation of a MEMS-based chopper for optical measurements is reported. The overall dimensions of the chopper, including the microactuators and micromechanical suspension, are 1200×1200 μm making it very compact. The comb-actuator driven chopper, designed for use in conjunction with fibre optics, has been fabricated in silicon-on-insulator material which has been back-etched to create an optical path through the thickness of the substrate. General electro-mechanical design considerations, including factors to minimise the side instability of the comb drive, are described. Finite element modelling (FEM) of the chopper is backed up by simple theoretical results, and the results from the theoretical work verify the findings from the FEM. Optical modelling of the chopper is also reported. Experimentally, the device was driven from 0-34 V DC to measure its static characteristics. For dynamic characterisation, the device was operated from 0-28 V AC and its fundamental resonant frequency was measured to be 3 kHz. Experimental evaluation of the device characteristics are shown to closely match the theoretical predictions.