Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Hierarchical micro-genetic algorithm paradigm for automatic optimal weight selection in H∞ loop-shaping robust flexible AC transmission system damping control design

Lo, K.L. and Khan, L. (2004) Hierarchical micro-genetic algorithm paradigm for automatic optimal weight selection in H∞ loop-shaping robust flexible AC transmission system damping control design. IEE Proceedings Generation Transmission and Distribution, 151 (1). pp. 109-118. ISSN 1350-2360

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A hierarchical-micro-genetic-algorithm-(H-μGA)-based strategy is presented for suitable weight selection in H∞ loop-shaping robust damping control of flexible AC transmission system (FACTS) devices via normalised coprime factorisation. In H∞ robust control design, the selection of a weighting function is an arduous and time consuming task. To muddle through this dilemma, an HGA in liaison with a micro-GA is employed to simultaneously select an appropriate structure and parameters of the weighting function in order to achieve a desired performance without the usual trial and error practice. To evaluate the effectiveness of the proposed technique, H∞ robust damping control systems for SVC and TCSC are investigated and compared with the classical H∞ loop- shaping control systems design. The performance and robustness of the proposed FACTS damping controls are validated through small signal and large signal simulations in a multi-machine power system.