Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

An intelligent system for interpreting the nuclear refuelling process within an advanced gas-cooled reactor

Steele, J.A. and Martin, L.A. and McArthur, S.D.J. and Moyes, A.J. and McDonald, J.R. and Howie, D. and Elrick, R. and Yule, I.Y. (2003) An intelligent system for interpreting the nuclear refuelling process within an advanced gas-cooled reactor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 217 (2). pp. 159-167. ISSN 0957-6509

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Evaluation of the data produced during the refuelling process in a nuclear power plant is required to ensure proper 'set-down' of the fuel assembly, thereby allowing the continued and safe operation of the station. The process of evaluating the data can be time consuming owing to the large amounts of data requiring considerable domain experience and interpretation. This paper presents an intelligent system (IS) to automate the process of data analysis, thereby shortening the evaluation time and providing an explanation of the reasoning behind its conclusions. The intelligent system utilizes a knowledge-based system (KBS), neural network based classification, K-means clustering techniques and rule induction methods to evaluate the data and inform the operator of any errors encountered.