Detection of leaf structures in close-range hyperspectral images using morphological fusion

Villegas, Gladys and Liao, Wenzhi and Criollo, Ronald and Philips, Wilfried and Ochoa, Daniel and Huang, Xin and Li, Jiayi and Chanussot, Jocelyn (2017) Detection of leaf structures in close-range hyperspectral images using morphological fusion. Geo-spatial Information Science, 20 (4). pp. 325-332. ISSN 1009-5020 (https://doi.org/10.1080/10095020.2017.1399673)

[thumbnail of Villegas-etal-GIS2017-Detection-leaf-structures-close-range-hyperspectral-images-using-morphological-fusion]
Preview
Text. Filename: Villegas_etal_GIS2017_Detection_leaf_structures_close_range_hyperspectral_images_using_morphological_fusion.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

Abstract

Close-range hyperspectral images are a promising source of information in plant biology, in particular, for in vivo study of physiological changes. In this study, we investigate how data fusion can improve the detection of leaf elements by combining pixel reflectance and morphological information. The detection of image regions associated to the leaf structures is the first step toward quantitative analysis on the physical effects that genetic manipulation, disease infections, and environmental conditions have in plants. We tested our fusion approach on Musa acuminata (banana) leaf images and compared its discriminant capability to similar techniques used in remote sensing. Experimental results demonstrate the efficiency of our fusion approach, with significant improvements over some conventional methods.