Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Modelling the evolution of distributions : an application to major league baseball

Koop, Gary (2004) Modelling the evolution of distributions : an application to major league baseball. Journal of the Royal Statistical Society: Series A, 167 (4). pp. 639-656. ISSN 0964-1998

[img]
Preview
Text (strathprints006911)
strathprints006911.pdf
Accepted Author Manuscript

Download (379kB) | Preview

Abstract

We develop Bayesian techniques for modelling the evolution of entire distributions over time and apply them to the distribution of team performance in Major League baseball for the period 1901-2000. Such models offer insight into many key issues (e.g. competitive balance) in a way that regression-based models cannot. The models involve discretizing the distribution and then modelling the evolution of the bins over time through transition probability matrices. We allow for these matrices to vary over time and across teams. We find that, with one exception, the transition probability matrices (and, hence, competitive balance) have been remarkably constant across time and over teams. The one exception is the Yankees, who have outperformed all other teams.