Experimental test and analysis of AC losses in multifilamentary MgB2 wire
Xi, Jiawen and Pei, Xiaoze and Sheng, Jie and Tanaka, Hideki and Ichiki, Yota and Zhang, Min and Yuan, Weijia (2019) Experimental test and analysis of AC losses in multifilamentary MgB2 wire. IEEE Transactions on Applied Superconductivity, 29 (5). 8201205. ISSN 1051-8223 (https://doi.org/10.1109/TASC.2019.2903924)
Preview |
Text.
Filename: Xi_etal_IEEE_TAS_2019_Experimental_test_and_analysis_of_AC_losses_in_multifilamentary_MgB2_wire.pdf
Accepted Author Manuscript Download (581kB)| Preview |
Abstract
AC losses in superconductors are essential for the design of cooling system for large scale power applications. Magnesium diboride (MgB2 ) superconducting wires have been investigated and manufactured over the last decade due to cheap raw materials and flexibility for coil design. In addition, multifilamentary MgB2 wires have been manufactured to reduce ac losses. In this paper, self-field ac losses of multifilamentary MgB2 wires with magnetic barrier are investigated using both experimental and numerical methods. A short straight wire sample and a coil sample are tested under various temperatures and frequencies between 16-and 128-Hz. The test results show that the transportation loss is independent of the operating temperature. On basis of both theoretical and numerical study, it is found that hysteresis loss in superconductor accounts only for a small fraction of the transportation losses, ferromagnetic hysteresis loss in the magnetic barrier dominates when the transport current is low, whereas eddy current loss dominates when the transport current is close to the critical current.
ORCID iDs
Xi, Jiawen, Pei, Xiaoze, Sheng, Jie, Tanaka, Hideki, Ichiki, Yota, Zhang, Min ORCID: https://orcid.org/0000-0003-4296-7730 and Yuan, Weijia ORCID: https://orcid.org/0000-0002-7953-4704;-
-
Item type: Article ID code: 68769 Dates: DateEvent31 August 2019Published8 March 2019Published Online27 February 2019AcceptedNotes: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 08 Jul 2019 10:37 Last modified: 11 Nov 2024 12:18 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/68769