On the sensitivity and uncertainty of wave energy conversion with an artificial neural-network-based controller
Li, Liang and Gao, Zhen and Yuan, Zhi-Ming (2019) On the sensitivity and uncertainty of wave energy conversion with an artificial neural-network-based controller. Ocean Engineering, 183. pp. 282-293. ISSN 0029-8018 (https://doi.org/10.1016/j.oceaneng.2019.05.003)
Preview |
Text.
Filename: Li_etal_OE_2019_On_the_sensitivity_and_uncertainty_of_wave_energy_conversion.pdf
Accepted Author Manuscript License: Download (1MB)| Preview |
Abstract
This work addresses with sensitivity and uncertainty of the energy conversion of an oscillation-body wave energy converter with an artificial neural-network-based controller. The smart controller applies the model predictive control strategy to implement real-time latching control to the wave energy converter. Since the control inputs are future wave forces, an artificial neural network is developed and trained by the machine learning algorithm to predict the short-term wave forces based on the real-time measurement of wave elevation. The sensitivity of wave energy conversion with respect to wave frequency and receding horizon length are investigated. Uncertainties of the neural network that lead to the prediction deviation are identified and quantified, and their influences on the energy conversion are examined. The control command is derived inappropriately in the presence of prediction deviation leading to the reduction of energy absorption. Moreover, it is the phase deviation that reduces the energy absorption.
ORCID iDs
Li, Liang ORCID: https://orcid.org/0000-0002-8528-3171, Gao, Zhen and Yuan, Zhi-Ming ORCID: https://orcid.org/0000-0001-9908-1813;-
-
Item type: Article ID code: 68455 Dates: DateEvent1 July 2019Published16 May 2019Published Online5 May 2019AcceptedSubjects: Technology > Hydraulic engineering. Ocean engineering Department: Faculty of Engineering > Naval Architecture, Ocean & Marine Engineering Depositing user: Pure Administrator Date deposited: 18 Jun 2019 11:41 Last modified: 16 Dec 2024 02:08 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/68455