Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins
Rolfe, E. and Quinn, R. and Sancho, A. and Kaboglu, C. and Johnson, A. and Liu, H. and Hooper, P. A. and Dear, J. P. and Arora, H. (2018) Blast resilience of composite sandwich panels with hybrid glass-fibre and carbon-fibre skins. Multiscale and Multidisciplinary Modelling, Experiments and Design, 1 (3). pp. 197-210. ISSN 2520-8179 (https://doi.org/10.1007/s41939-018-0025-9)
Preview |
Text.
Filename: Rolfe_etal_MMMED_2018_Blast_resilience_of_composite_sandwich_panels_with_hybrid.pdf
Final Published Version License: Download (3MB)| Preview |
Abstract
The development of composite materials through hybridisation is receiving a lot of interest; due to the multiple benefits, this may bring to many industries. These benefits include decreased brittle behaviour, which is an inherent weakness for composite materials, and the enhancement of mechanical properties due to the hybrid effect, such as tensile and flexural strength. The effect of implementing hybrid composites as skins on composite sandwich panels is not well understood under high strain rate loading, including blast loading. This paper investigates the blast resilience of two types of hybrid composite sandwich panel against a full-scale explosive charge. Two hybrid composite sandwich panels were mounted at a 15 m stand-off distance from a 100 kg nitromethane charge. The samples were designed to reveal whether the fabric layup order of the skins influences blast response. Deflection of the sandwich panels was recorded using high-speed 3D digital image correlation (DIC) during the blast. It was concluded that the combination of glass-fibre reinforced polymer (GFRP) and carbon-fibre reinforced polymer (CFRP) layers in hybrid laminate skins of sandwich panels decreases the normalised deflection compared to both GFRP and CFRP panels by up to 41 and 23%, respectively. The position of the glass-fibre and carbon-fibre layers does not appear to affect the sandwich panel deflection and strain. A finite element model has successfully been developed to predict the elastic response of a hybrid panel under air blast loading. The difference between the maximum central displacement of the experimental data and numerical simulation was ca. 5% for the hybrid panel evaluated.
ORCID iDs
Rolfe, E., Quinn, R., Sancho, A. ORCID: https://orcid.org/0000-0002-8761-1976, Kaboglu, C., Johnson, A., Liu, H., Hooper, P. A., Dear, J. P. and Arora, H.;-
-
Item type: Article ID code: 67395 Dates: DateEvent1 September 2018Published18 July 2018Published Online9 July 2018AcceptedSubjects: Technology > Engineering (General). Civil engineering (General) > Engineering design Department: Faculty of Engineering > Design, Manufacture and Engineering Management Depositing user: Pure Administrator Date deposited: 21 Mar 2019 10:47 Last modified: 11 Nov 2024 12:16 URI: https://strathprints.strath.ac.uk/id/eprint/67395