Ion acceleration from ultra thin foils on ASTRA-Gemini laser with 50fs, 1020-1021 W/cm2 pulses

Prasad, R. and Ter-Avetisyan, S. and Doria, D. and Quinn, K. E. and Romagnani, L. and Foster, P. S. and Brenner, C. M. and Green, J. S. and Robinson, A. P. L. and Gallegos, P. and Streeter, M. J. V. and Carroll, D. C. and Tresca, O. and Dover, N. and Palmer, C. A.J. and Schreiber, J. and Neely, D. and Najmudin, Z. and McKenna, P. and Zepf, M. and Borghesi, M.; McKenna, C., ed. (2010) Ion acceleration from ultra thin foils on ASTRA-Gemini laser with 50fs, 1020-1021 W/cm2 pulses. In: 37th EPS Conference on Plasma Physics 2010. European Physical Society (EPS), IRL. ISBN 2914771622

[thumbnail of Prasad-etal-CPP-2010-Ion-acceleration-from-ultra-thin-foils-on-ASTRA-Gemini-laser]
Preview
Text. Filename: Prasad_etal_CPP_2010_Ion_acceleration_from_ultra_thin_foils_on_ASTRA_Gemini_laser.pdf
Final Published Version

Download (1MB)| Preview

Abstract

We report on experimental investigations of ion acceleration from thin foil targets irradiated with ultra-short (~ 50 fs), high contrast (~1010) and ultra-intense (up to 1021 W/cm2) laser pulses. These measurements provided for the first time the opportunity to extend the scaling laws for the acceleration process in the ultra-short regime beyond the 1020 W/cm2 threshold, and to access new ion acceleration regimes. The scaling of accelerated ion energies was investigated by varying a number of parameters such as target thickness (down to 10 nm), laser light polarization (circular and linear), angle of laser incidence (oblique-350, normal) and laser energy. The effect of target thickness on the ion flux produced was also investigated at 350 and normal laser incidence on target.