Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Electrically-controlled neuron-like spiking regimes in vertical-cavity surface-emitting lasers at ultrafast rates

Robertson, Joshua and Hurtado, Antonio and Wade, Ewan (2019) Electrically-controlled neuron-like spiking regimes in vertical-cavity surface-emitting lasers at ultrafast rates. IEEE Journal of Selected Topics in Quantum Electronics. ISSN 1077-260X (In Press)

[img]
Preview
Text (Robertson-etal-JSTQE-2019-Electrically-controlled-neuron-like-spiking-regimes-in-vertical-cavity-surface-emitting-lasers-at-ultrafast-rates)
Robertson_etal_JSTQE_2019_Electrically_controlled_neuron_like_spiking_regimes_in_vertical_cavity_surface_emitting_lasers_at_ultrafast_rates.pdf
Accepted Author Manuscript

Download (701kB) | Preview

Abstract

We report experimentally on the electrically-controlled, tunable and repeatable neuron-like spiking regimes generated in an optically-injected vertical-cavity surface-emitting laser (VCSEL) operating at the telecom wavelength of 1300 nm. These fast spiking dynamics (obtained at sub-nanosecond speed rates) demonstrate different behaviours observed in biological neurons such as thresholding, phasic and tonic spiking and spike rate and spike latency coding. The spiking regimes are activated in response to external stimuli (with controlled strengths and temporal duration) encoded in the bias current applied to a VCSEL subject to continuous wave (CW) optical injection (OI). These results reveal the prospect for fast (>7 orders of magnitude faster than neurons), novel, electrically-controlled spiking photonic modules for future neuromorphic computing platforms.