Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Electrically-controlled neuron-like spiking regimes in vertical-cavity surface-emitting lasers at ultrafast rates

Robertson, Joshua and Hurtado, Antonio and Wade, Ewan (2019) Electrically-controlled neuron-like spiking regimes in vertical-cavity surface-emitting lasers at ultrafast rates. IEEE Journal of Selected Topics in Quantum Electronics. ISSN 1077-260X (In Press)

[img]
Preview
Text (Robertson-etal-JSTQE-2019-Electrically-controlled-neuron-like-spiking-regimes-in-vertical-cavity-surface-emitting-lasers-at-ultrafast-rates)
Robertson_etal_JSTQE_2019_Electrically_controlled_neuron_like_spiking_regimes_in_vertical_cavity_surface_emitting_lasers_at_ultrafast_rates.pdf
Accepted Author Manuscript

Download (701kB)| Preview

    Abstract

    We report experimentally on the electrically-controlled, tunable and repeatable neuron-like spiking regimes generated in an optically-injected vertical-cavity surface-emitting laser (VCSEL) operating at the telecom wavelength of 1300 nm. These fast spiking dynamics (obtained at sub-nanosecond speed rates) demonstrate different behaviours observed in biological neurons such as thresholding, phasic and tonic spiking and spike rate and spike latency coding. The spiking regimes are activated in response to external stimuli (with controlled strengths and temporal duration) encoded in the bias current applied to a VCSEL subject to continuous wave (CW) optical injection (OI). These results reveal the prospect for fast (>7 orders of magnitude faster than neurons), novel, electrically-controlled spiking photonic modules for future neuromorphic computing platforms.