Conformable, stretchable sensor to record bladder wall stretch

Hannah, Stuart and Brige, Pauline and Ravichandran, Aravind and Ramuz, Marc (2019) Conformable, stretchable sensor to record bladder wall stretch. ACS Omega, 4 (1). 1907–1915. ISSN 2470-1343 (https://doi.org/10.1021/acsomega.8b02609)

[thumbnail of Hannah-etal-ACS-Omega-2019-Conformable-stretchable-sensor-to-record-bladder-wall-stretch]
Preview
Text. Filename: Hannah_etal_ACS_Omega_2019_Conformable_stretchable_sensor_to_record_bladder_wall_stretch.pdf
Final Published Version

Download (4MB)| Preview

Abstract

A soft, conformable, biocompatible strain sensor based on ultra-thin stretchable electronics is reported. The sensor comprises gold thin films patterned on a 50 μm thick polyurethane substrate to produce resistive-based strain sensors for monitoring bladder stretch. The sensor responds linearly as a function of strain from 0 to 50%, with an increasing sensitivity as a function of sensor length. The sensor displays good stability with very little hysteresis when it is subjected to cycling between 0 and a maximum strain of 50%, with the largest deviation between 0 and 50% strain of ∼19% after 100 cycles attributed to the sensor with the longest length (6 mm) because it physically stretches by a greater distance than sensors with a shorter length. “Breaking” tests on the sensor reveal that shorter sensors can withstand higher maximum strains than longer sensors. A biocompatible hydrogel adhesive is used to attach sensors in vitro to the outside wall of a pig’s bladder, and sensor performance is studied with respect to repeated bladder filling and emptying to investigate stretch changes. By monitoring bladder stretch and thus volume noninvasively, the sensor provides a route for developing new treatment options for various urological conditions.