Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Low complexity wireless sensor system for partial discharge localisation

Iorkyase, Ephraim and Tachtatzis, Christos and Lazaridis, Pavlos and Glover, Ian and Atkinson, Robert (2019) Low complexity wireless sensor system for partial discharge localisation. IET Wireless Sensor Systems, 9 (3). pp. 158-165. ISSN 2043-6386

[img]
Preview
Text (Iorkyase-etal-IET-WSS-2019-Low-complexity-wireless-sensor-system)
Iorkyase_etal_IET_WSS_2019_Low_complexity_wireless_sensor_system.pdf
Accepted Author Manuscript

Download (884kB)| Preview

    Abstract

    This study describes a key element of any modern wireless sensor system: data processing. The authors describe a system consisting of a wireless sensor network and an algorithmic software for condition-based monitoring of electrical plant in a live substation. Specifically, the aim is to monitor for the presence of partial discharge (PD) using a matrix of inexpensive radio sensors with limited processing capability. A low-complexity fingerprinting technique is proposed, given that the sensor nodes to be deployed will be highly constrained in terms of processing power, memory and battery life. Two variants of artificial neural network (ANN) learning models (multilayer perceptron and generalised regression neural network) that use regression as a form of function approximation are developed and their performance compared to K-nearest neighbour and weighted K-nearest neighbour models. The results indicate that the ANN models yield superior performance in terms of robustness against noise and may be particularly suited for PD localisation.