Guidance on conducting 2D linear viscoelastic site response analysis using a finite element code
Volpini, Carolina and Douglas, John and Nielsen, Andreas Hvidtfelt (2021) Guidance on conducting 2D linear viscoelastic site response analysis using a finite element code. Journal of Earthquake Engineering, 25 (6). pp. 1153-1170. ISSN 1559-808X (https://doi.org/10.1080/13632469.2019.1568931)
Preview |
Text.
Filename: Volpini_etal_JEE_2019_Guidance_on_conducting_2D_linear_viscoelastic_site_response.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
Various software packages are available to conduct one-dimensional (1D) and two-dimensional (2D) site response analyses (SRAs). In this article, a finite element program is tested with the purpose of assessing the importance of several aspects on the obtained results and verifying the software. Abaqus (Dassault Systèmes) is compared with the 1D SRA software STRATA for simple 1D models to understand the influence of the boundary conditions; as being a 1D SRA program, STRATA does not require vertical boundary conditions. For Abaqus, the subroutine by Nielsen is used to implement free-field boundary conditions. In addition, we test the influence of mesh dimension and Rayleigh damping as well as the importance of buffer-zone width. 2D SRAs with Abaqus and FLAC3D, which is commonly used for geotechnical analyses, are compared as part of the assessment. Similar results are obtained from the two programs, but Abaqus is preferred as it is more efficient for linear elastic analyses than FLAC3D, which, on the contrary, performs well for soil presenting strongly non-linear behaviour and effective stress. We demonstrate that reliable results can be achieved, not only for simple uniform sites but also for complex sites with multiple layers and dipping stratigraphy.
ORCID iDs
Volpini, Carolina, Douglas, John ORCID: https://orcid.org/0000-0003-3822-0060 and Nielsen, Andreas Hvidtfelt;-
-
Item type: Article ID code: 66530 Dates: DateEvent30 April 2021Published8 March 2019Published Online5 January 2019AcceptedSubjects: Technology > Engineering (General). Civil engineering (General) Department: Faculty of Engineering > Civil and Environmental Engineering Depositing user: Pure Administrator Date deposited: 10 Jan 2019 14:29 Last modified: 06 Jan 2025 09:00 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/66530