Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Acanthamoeba proteases contribute to macrophage activation through PAR1, but not PAR2

Cano, Antonella and Mattana, Antonella and Henriquez, Fiona L. and Alexander, James and Roberts, Craig W. (2018) Acanthamoeba proteases contribute to macrophage activation through PAR1, but not PAR2. Parasite Immunology. e12612. ISSN 0141-9838

[img] Text (Cano-et-al-PI-2018-Acanthamoeba-proteases-contribute-to-macrophage-activation)
Cano_et_al_PI_2018_Acanthamoeba_proteases_contribute_to_macrophage_activation.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 21 December 2019.

Download (415kB) | Request a copy from the Strathclyde author

Abstract

AIM Acanthamoeba infections are characterized by an intense localized innate immune response associated with an influx of macrophages. Acanthamoeba protease production is known to affect virulence. Herein, the ability of Acanthamoeba trophozoite proteases, of either the laboratory Neff strain, or a recently isolated clinical strain, to stimulate IL-12 and IL-6 and to activate protease-activated receptors, PAR1 and PAR2 expressed on murine macrophages, was investigated. METHOD AND RESULTS Using selected protease inhibitors, leupeptin and E64, we showed that Acanthamoeba proteases can stimulate IL-12 and IL-6 by murine macrophages. Subsequently, using specific antagonists to inhibit PAR1, and bone-marrow derived macrophages from PAR2 gene deficient mice, we demonstrate that PAR1, but not PAR2 contributes to macrophage IL-12 production in response to Acanthamoeba. In contrast, Acanthamoeba-induced IL-6 production is PAR1 and PAR2 independent. CONCLUSION This study shows for the first time the involvement of PARs, expressed on macrophages, in the response to Acanthamoeba trophozoites and might provide useful insight into Acanthamoeba infections and their future treatments.