Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

A new RAM normalized 1f-WMS technique for the measurement of gas parameters in harsh environments and a comparison with 2f/1f

Upadhyay, Abhishek and Lengden, Michael and Wilson, David and Humphries, Gordon Samuel and Crayford, Andrew P. and Pugh, Daniel G. and Johnson, Mark P. and Stewart, George and Johnstone, Walter (2018) A new RAM normalized 1f-WMS technique for the measurement of gas parameters in harsh environments and a comparison with 2f/1f. IEEE Photonics Journal, 10 (6). ISSN 1943-0655

[img]
Preview
Text (Upadhyay-etal-IEEE-Photonics-2018-A-new-RAM-normalized-1f-WMS-technique-for-the-measurement-of-gas-parameters)
Upadhyay_etal_IEEE_Photonics_2018_A_new_RAM_normalized_1f_WMS_technique_for_the_measurement_of_gas_parameters.pdf
Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (4MB) | Preview

Abstract

A calibration-free 1f wavelength modulation spectroscopy (1f-WMS) technique for gas species parameter measurement is demonstrated. In this technique, the total magnitude of the first harmonic (1f) WMS signal is normalised by a component of the 1f residual amplitude modulation (1f-RAM) signal. This method preserves the advantages of traditional nf/1f-WMS (n ≥ 2) technique, such as immunity to the non-absorbing systematic losses and accurate recovery of gas parameters without the requirement for non-absorbing regions for normalisation at high pressure or high modulation index values (m-values). The proposed technique only requires the first harmonic signal, which has the largest magnitude of all the harmonics signals, and therefore fundamentally has a higher sensitivity to the nf/1f technique. Furthermore, since only the 1f-WMS signal is used the technique is less complex in terms of signal processing and data acquisition. The paper also shows a comparison of the proposed technique and 2f/1f for measuring CO2 in the exhaust of a combuster. This data highlights how nonlinearities in the optical detection system as a function of frequency have a considerable effect on the recovered 2f/1f spectra causing variation in the recovered gas concentrations. This effect is not seen in the methodology proposed in this paper.