Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Adsorption of fibronectin fragment on surfaces using fully atomistic molecular dynamics simulations

Liamas, Evangelos and Kubiak-Ossowska, Karina and Black, Richard A. and Thomas, Owen R.T. and Zhang, Zhenyu J. and Mulheran, Paul A. (2018) Adsorption of fibronectin fragment on surfaces using fully atomistic molecular dynamics simulations. International Journal of Molecular Sciences, 19 (11). ISSN 1422-0067

Text (Liamas-etal-IJMS-2018-Adsorption-of-fibronectin-fragment-on-surfaces)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB) | Preview


The effect of surface chemistry on the adsorption characteristics of a fibronectin fragment (FNIII8⁻10) was investigated using fully atomistic molecular dynamics simulations. Model surfaces were constructed to replicate self-assembled monolayers terminated with methyl, hydroxyl, amine, and carboxyl moieties. It was found that adsorption of FNIII8⁻10 on charged surfaces is rapid, specific, and driven by electrostatic interactions, and that the anchoring residues are either polar uncharged or of opposing charge to that of the targeted surfaces. On charged surfaces the presence of a strongly bound layer of water molecules and ions hinders FNIII8⁻10 adsorption. In contrast, adsorption kinetics on uncharged surfaces are slow and non-specific, as they are driven by van der Waals interactions, and the anchoring residues are polar uncharged. Due to existence of a positively charged area around its cell-binding region, FNIII8⁻10 is available for subsequent cell binding when adsorbed on a positively charged surface, but not when adsorbed on a negatively charged surface. On uncharged surfaces, the availability of the fibronectin fragment's cell-binding region is not clearly distinguished because adsorption is much less specific.