Cathodic quantum dot facilitated electrochemiluminescent detection

Stewart, Alasdair J. and Brown, Kelly and Dennany, Lynn (2018) Cathodic quantum dot facilitated electrochemiluminescent detection. Analytical Chemistry, 90 (21). pp. 12944-12950. ISSN 0003-2700

[img] Text (Stewart-Brown-Dennany-AC-2018-Cathodic-quantum-dot-facilitated-electrochemiluminescent)
Stewart_Brown_Dennany_AC_2018_Cathodic_quantum_dot_facilitated_electrochemiluminescent.pdf
Accepted Author Manuscript
Restricted to Repository staff only until 3 October 2019.

Download (985kB) | Request a copy from the Strathclyde author

    Abstract

    The expansion of electrochemical sensors to biomedical applications at point of care requires these sensors to undergo analysis without any pre-treatment of extraction. This poses a major challenge for all electrochemical sensors including electrochemiluminescent (ECL) based sensors. ECL offers many advantages for biomedical applications however; obtaining results from complex matrices has proven to be a large hurdle for the application of ECL sensors within this field. This work demonstrates the potential of cathodic ECL to detect and quantify homocysteine with 0.1 nM limit of detection, which is associated with hyperhomocysteinemia, in blood. This near infrared quantum dot (NIR QD) based ECL sensor displays good linearity allowing for rapid detection and providing a basis for exploitation of ECL based sensors for biomedical diagnostics utilising homocysteine as a model cathodic co-reactant. This work will lay the foundations for future developments in biosensing and imaging fields and stands as an initial proof of concept for the utilization of cathodic ECL technologies for biomedical applications once the limits of detection within clinically relevant levels has been achieved. This work illustrates the potential of cathodic ECL sensors, using Hcy as a model complex, for the detection of biomolecules.