Picture of offices in the City of London

Open Access research that is better understanding work in the global economy...

Strathprints makes available scholarly Open Access content by researchers in the Department of Work, Employment & Organisation based within Strathclyde Business School.

Better understanding the nature of work and labour within the globalised political economy is a focus of the 'Work, Labour & Globalisation Research Group'. This involves researching the effects of new forms of labour, its transnational character and the gendered aspects of contemporary migration. A Scottish perspective is provided by the Scottish Centre for Employment Research (SCER). But the research specialisms of the Department of Work, Employment & Organisation go beyond this to also include front-line service work, leadership, the implications of new technologies at work, regulation of employment relations and workplace innovation.

Explore the Open Access research of the Department of Work, Employment & Organisation. Or explore all of Strathclyde's Open Access research...

A numerical approach for the assessment of obesity-induced vascular changes in children

Kazakidi, Asimina (2018) A numerical approach for the assessment of obesity-induced vascular changes in children. In: 8th World Congress of Biomechanics, 2018-07-08 - 2018-07-12, Convention Centre Dublin. (In Press)

[img]
Preview
Text (Kazakidi-WCB2018-A-numerical-approach-for-the-assessment-of-obesity-induced)
Kazakidi_WCB2018_A_numerical_approach_for_the_assessment_of_obesity_induced.pdf
Accepted Author Manuscript

Download (88kB) | Preview

Abstract

Obesity in children and adolescents has taken epidemic proportions in recent years and has become one of the major challenges of the 21st century. Primarily a dietary disease, obesity is believed to accelerate the initiation and progression of endothelial dysfunction [1], one of the early biological markers for atherosclerotic lesions that underlie most cardiovascular diseases. Several markers have been proposed to help the clinical assessment of endothelial damage in high-risk paediatric patients. In obese children, arterial changes can painlessly be evaluated with measurements of the aortic and carotid intima-media thickness (IMT) and flowmediated dilatation (FMD) of the brachial, radial and femoral arteries [2]. Pulse wave analysis is additionally utilised to assess arterial stiffness, distensibility and compliance. This study observes childhood obesity under the magnifying lens of blood flow mechanics associated with obesity-induced vascular changes. The scope is to develop a safe and high-fidelity multi-scale computational tool for prognostic markers and predictive personalised care of obesity-related cardiovascular diseases, and transfer it into the paediatric reality. The current presentation will discuss a computational model of an arterial conduit during FDM.