Joint kernelized sparse representation classification for hyperspectral imagery
Sun, He and Ren, Jinchang and Yan, Yijun and Zabalza, Jaime and Marshall, Stephen (2018) Joint kernelized sparse representation classification for hyperspectral imagery. In: Hyperspectral Imaging Applications (HSI) 2018, 2018-10-10 - 2018-10-11.
Preview |
Text.
Filename: Sun_etal_HSI2018_Joint_kernelized_sparse_representation_classification_for_hyperspectral_imagery.pdf
Accepted Author Manuscript Download (382kB)| Preview |
Abstract
In recent years, the hyperspectral image (HSI) classification has received much attention due to its importance on the military applications, food quality assessment [1], and land cover analysis [2-5], etc. Multiple classifiers have been adopted to label pixels of HSI images, including support vector machine (SVM), random forest (RF), and recently, the deep learning methods. Considering that HSI pixels belonging to the same class are usually lying in a low-dimensional space, those pixels can be represented by training samples from the same class. Based on that, Sparse Representation Classification (SRC) methods have also introduced in the HSI imagery. For an unlabeled pixel, a few atoms from the constructed training dictionary can sparsely represent it. With the recovered sparse coefficients, the class label can be determined by the residual between the test pixel and its approximation. With the development of SRC in HIS [5, 6], there is one severe problem during the process of classification. Due to the high dimensions of the HSI data, it may result the Hughes phenomenon. Sufficient training samples are required to overcome the curse of dimensionality. However, sufficient training data are not always available in real application. For example, the ground truth labelling work for remote sensing data is rather inconvenient. Therefore, to solve the above problem, we decide to combine multiple types of features extracted from HSI data, and a joint kernelized SRC will be operated on those extracted features. The aim of our work is to improve the performance of SRC with less training samples.
ORCID iDs
Sun, He, Ren, Jinchang ORCID: https://orcid.org/0000-0001-6116-3194, Yan, Yijun ORCID: https://orcid.org/0000-0003-0224-0078, Zabalza, Jaime ORCID: https://orcid.org/0000-0002-0634-1725 and Marshall, Stephen ORCID: https://orcid.org/0000-0001-7079-5628;-
-
Item type: Conference or Workshop Item(Paper) ID code: 65480 Dates: DateEvent10 October 2018Published16 August 2018AcceptedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering
Strategic Research Themes > Measurement Science and Enabling TechnologiesDepositing user: Pure Administrator Date deposited: 19 Sep 2018 09:34 Last modified: 11 Nov 2024 16:55 URI: https://strathprints.strath.ac.uk/id/eprint/65480