Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Transport and analysis of electron beams from a laser wakefield accelerator in the 100 MeV energy range with a dedicated magnetic line

Maitrallain, A. and Audet, T.L. and Dobosz Drufrénoy, S. and Chancé, A. and Maynard, G. and Lee, P. and Mosnier, A. and Schwindling, J. and Delferriére, O. and Delerue, N. and Specka, A. and Monot, P. and Cros, B. (2018) Transport and analysis of electron beams from a laser wakefield accelerator in the 100 MeV energy range with a dedicated magnetic line. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 908. pp. 159-166. ISSN 0168-9002

[img] Text (Maitrallain-etal-NIMPRSA-2018-laser-wakefield-accelerator-in-the-100-MeV-energy-range-with-a-dedicated-magnetic-line)
Accepted Author Manuscript
Restricted to Repository staff only until 6 August 2019.
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Request a copy from the Strathclyde author


    Electron bunches generated by laser driven wakefield acceleration are transported and analyzed using a magnetic line composed of a triplet of quadrupoles and a dipole. Short pulse bunches with a total charge of ≈130pC, and broad band energy spectra in the range 45 to 150MeV are generated by ionization assisted injection in a gas cell. The electron source is imaged about one meter away from the exit of the gas cell by the magnetic line, delivering electron bunches at a stable position in the image plane where a charge density of ≈2.9pC∕mm2 at an energy of 69.4±0.6MeV is achieved. This magnetic line improves dramatically the accuracy of energy determination of this electron source, leading to an energy error as low as 8.6‰ in the 70MeV range for 5mrad divergence electron bunch and considering the resolution of the entire detection system. The transport of bunches with improved stability and energy selection paves the way to various applications including multi-stage laser plasma acceleration.