Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Robust design for the lower extremity exoskeleton under a stochastic terrain by mimicking wolf pack behaviors

Wang, Zhonglai and Yu, Shui and Chen, Leo Yi and Li, Yun (2018) Robust design for the lower extremity exoskeleton under a stochastic terrain by mimicking wolf pack behaviors. IEEE Access, 6. pp. 30714-30725. ISSN 2169-3536

Text (Wang-etal-IEEEAccess-2018-Robust-design-for-the-lower-extremity-exoskeleton)
Final Published Version

Download (3MB) | Preview


While kinematics analysis plays an important role in studying human limb motions, existing methods (namely, direct and inverse kinematics) have their deficiencies. To improve, this paper develops a robust design method using artificial intelligence and applies it to the lower extremity exoskeleton design under a stochastic terrain. An inverse kinematic model is first built considering the impact on human's comfort from the stochastic terrain. Then, a robust design model is constructed based on the inverse kinematic model, where the design framework mimics wolf pack behaviors and the robust design problem is thus solved for keeping probabilistic consistency between the exoskeleton and its wearer. A case study validates the effectiveness of the developed robust method and algorithm, which ensures walking comfort under the stochastic terrain within the validity of simulations.