Differential evolution with an evolution path : a DEEP evolutionary algorithm

Li, Yuan-Long and Zhan, Zhi-Hui and Gong, Yue-Jiao and Chen, Wei-Neng and Zhang, Jun and Li, Yun (2015) Differential evolution with an evolution path : a DEEP evolutionary algorithm. IEEE Transactions on Cybernetics, 45 (9). pp. 1798-1810. ISSN 2168-2275

[img]
Preview
Text (Li-etal-IEEETC2014-Differential-evolution-with-an-evolution-path)
Li_etal_IEEETC2014_Differential_evolution_with_an_evolution_path.pdf
Final Published Version

Download (3MB)| Preview

    Abstract

    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs.