Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

On the unintentional rarefaction effect in LBM modeling of intrinsic permeability

Li, Jun and Ho, Minh Tuan and Wu, Lei and Zhang, Yonghao (2018) On the unintentional rarefaction effect in LBM modeling of intrinsic permeability. Advances in Geo-Energy Research, 2 (4). pp. 404-409. ISSN 2208-598X

[img]
Preview
Text (Li-etal-AGER-2018-On-the-unintentional-rarefaction-effect-in-LBM-modeling)
Li_etal_AGER_2018_On_the_unintentional_rarefaction_effect_in_LBM_modeling.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (538kB) | Preview

Abstract

Lattice Boltzmann method (LBM) has been applied to predict flow properties of porous media including intrinsic permeability, where it is implicitly assumed that the LBM is equivalent to the incompressible (or near incompressible) Navier-Stokes equation. However, in LBM simulations, high-order moments, which are completely neglected in the Navier-Stokes equation, are still available through particle distribution functions. To ensure that the LBM simulation is correctly working at the Navier-Stokes hydrodynamic level, the high-order moments have to be negligible. This requires that the Knudsen number (Kn) is small so that rarefaction effect can be ignored. In our study, we elaborate this issue in LBM modeling of porous media flows, which is particularly important for gas flows in ultra-tight media. The influence of Reynolds number (Re) on the intrinsic permeability is also discussed.