EW-tableaux, Le-tableaux, tree-like tableaux and the Abelian sandpile model

Selig, Thomas and Smith, Jason P. and Steingrímsson, Einar (2018) EW-tableaux, Le-tableaux, tree-like tableaux and the Abelian sandpile model. The Electronic Journal of Combinatorics, 25 (3). pp. 1-32. ISSN 1077-8926

[img]
Preview
Text (Selig-etal-EJC2018-EW-tableaux-Le-tableaux-tree-like-tableaux-and-the-Abelian)
Selig_etal_EJC2018_EW_tableaux_Le_tableaux_tree_like_tableaux_and_the_Abelian.pdf
Final Published Version
License: Creative Commons Attribution-NoDerivatives 4.0 logo

Download (410kB)| Preview

    Abstract

    An EW-tableau is a certain 0/1-filling of a Ferrers diagram, corresponding uniquely to an acyclic orientation, with a unique sink, of a certain bipartite graph called a Ferrers graph. We give a bijective proof of a result of Ehrenborg and van Willigenburg showing that EW-tableaux of a given shape are equinumerous with permutations with a given set of excedances. This leads to an explicit bijection between EW-tableaux and the much studied Le-tableaux, as well as the tree-like tableaux introduced by Aval, Boussicault and Nadeau. We show that the set of EW-tableaux on a given Ferrers diagram are in 1-1 correspondence with the minimal recurrent configurations of the Abelian sandpile model on the corresponding Ferrers graph. Another bijection between EW-tableaux and tree-like tableaux, via spanning trees on the corresponding Ferrers graphs, connects the tree-like tableaux to the minimal recurrent configurations of the Abelian sandpile model on these graphs. We introduce a variation on the EW-tableaux, which we call NEW-tableaux, and present bijections from these to Le-tableaux and tree-like tableaux. We also present results on various properties of and statistics on EW-tableaux and NEW-tableaux, as well as some open problems on these.